The Native Vegetation Advantage Water Quality, Soil Conservation, Soil Function, Air Quality

Native vegetation improves water quality:

Reduced soil erosion – Native vegetation possesses significantly greater root mass than non-native grasses, providing reinforcing structure to hold soil in place. The above ground biomass of native grasses intercepts and

dissipates the energy of falling rain. Native grasses hold from 50% to 97% of the rain that falls, keeping it from impacting the soil.¹ Accumulated leaf and stem material protects the surface as well.

Increased nutrient/sediment retention – Native grasses trap up to 50% of coarse sediments, many of which are nutrient and pesticide laden. In studies, switchgrass removed significantly more N and P that cool-season filter strips.² Native grasses are known to facilitate microbial breakdown of organic matter, pesticides and heavy metals.³

Reduced water flow velocity and runoff – Accumulated residual leaf and stem material on the ground surface retards runoff, slowing flow functioning the same as miniature runoff retention ponds. Tall, stiff-stemmed native grasses are resistant to flow and slow water velocity and maintain their effectiveness as filters longer than short, sod-forming grasses.^{4,5}

Native vegetation promotes soil conservation:

Reducing soil erosion – The extensive root mass, rainfall interception and leaf/stem material at the ground surface protect the soil from erosion.

Increased soil organic carbon – Native perennial plants eliminate cultivation which depletes soil organic carbon. As much as 70% of native grasses root systems die and regenerate annually,¹ increasing soil organic carbon and native vegetation sequesters carbon from the atmosphere and stores it as organic matter in the soil.⁶

Native vegetation improves soil function:

Increased infiltration rate – Increased soil organic matter and macropore space in native vegetation increases the infiltration rate.¹ Accumulated leaf and stem material at ground level retard runoff, allowing more time for infiltration.⁷

Increased water-holding capacity – The increased soil organic matter in native vegetation acts like a sponge and increases the water holding capacity. Micropore space created by decaying fine root structure and mycorrhizae create capillary action in the soil which increases water holding capacity.¹

Increased soil fertility – Decay of fine root masses increase soil organic matter and deep roots access nutrients otherwise inaccessible by shallower rooted plants.¹

Reduce soil compaction – Deep roots reduce soil compaction.¹

Native vegetation improves air quality:

Carbon sequestration – Native vegetation sequesters more carbon than introduced grasses.⁸ Due to the annual death and regeneration of parts of the extensive root system, more than 95% of the carbon in native grasses is below the ground in soil organic matter.⁹

References

- 1. Weaver, J.E. 1954. North American Prairie. Johnsen Publishing Company.
- 2. Lee, K.H., T. Isenhart, R. Schultz, and S. Mickelson. 1998. Nutrient and sediment removal by switchgrass and cool-season grass filter strips in Central Iowa, USA. Agroforestry Systems. 44: 121-132.
- 3. Dodson, R.D. 1999. Stormwater pollution control: municipal, industrial and construction NPDES compliance. Second edition. McGraw-Hill, New York.
- 4. Dillaha, T.A., R.B. Reneau, S. Mostaghimi, and D. Lee. 1989. Vegetative filter strips for agricultural nonpoint source pollution control. Trans ASAE. 32: 513–519.
- Dabney, S.M., K.C. McGregor, L.D. Meyer, E.H. Grissinger, and G.R. Foster. 1993b. Vegetative barriers for runoff and sediment control. Pages 60–70 in J. K. Mitchell, (Ed). Integrated Resource Management and Landscape Modification for Environmental Protection. St. Joseph, MI: American Society of Agricultural Engineers.
- 6. Bransby, D.I., McLaughlin, S.B., Parrish, D.J., 1998. A review of carbon and nitrogen balances in switchgrass grown for energy. Biomass and Bioenergy 14: 379-384.
- 7. Lee, K.H. T. Isenhart and R.Schultz. 2003. Sediment and nutrient removal in an established multi-species riparian buffer. J. of Soil and Water Conservation. 58:1-10.
- 8. USDA Agricultural Research Service. 2008 AgResearch Magazine. Glomalin What is it ... and What Does It do? Vol. 56, No. 6.
- 9. Jobbagy, E.G., and R.B. Jackson. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Applic. 10:423-436.

